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In  this paper we study the statistical laws of relative dispersion in two-dimensional 
turbulence by deriving an exact equation governing its evolution in time, then 
evaluating the magnitude of its various terms in numerical experiments, which 
allows us to check the validity of the classical dispersion laws : the equivalent to the 
Richardson-Obukhov t3 law in the energy cascade range, and the Kraichnan-Lin 
exponential law in the enstrophy cascade range. We examine theoretically and 
experimentally the conditions of validity of both laws. It is found that the t3 law is 
obtained in the energy inertial range provided the separation scale of the particles is 
smaller by an order of magnitude than the injection scale. When the t3 law is reached, 
the relative acceleration correlations are observed to have reached a statistical quasi- 
stationary stage: this would tend to justify in the energy inertial range of two- 
dimensional turbulence a working hypothesis formulated by Lin & Reid (1963) ; also, 
the necessity of starting from very small initial separations to get the t3 law may be 
explained by the time necessary for relative acceleration correlations to reach the 
statistical quasi-stationary regime. On the other hand, the Kraichnan-Lin 
exponential law is, strictly speaking, never observed ; it  is in fact reduced to a very 
short transient stage when the relative dispersion characteristic time reaches its 
minimum value, as predicted by Batchelor. 

1. Introduction 
The fundamental results on turbulent relative dispersion are essentially derived 

from Batchelor’s work as well as from a number of approaches inspired by 
Kolmogorov’s and Obukhov’s self-similarity theory (Batchelor 1952 ; Obukhov 
1941) : for extensive reviews see Monin & Yaglom (1975) and Bennett (1987). In  the 
case of two-dimensional turbulence, these classic approaches result in the following 
behaviour for the relative dispersion coefficient (Kraichnan 1966 ; Lin 1972 ; Bennett 

1984) : --D2 I d  
N Di in the energy cascade, ( la)  2 dt 

(1 b )  
I d  --D2 - D2 
2 dt 

in the enstrophy cascade. 

The $-exponent law or Richardson-Obukhov law (R-0 hereafter) corresponds to a 
cubic growth with time of the mean-squared relative displacement D2 : 

while the 2-exponent law or Kraichnan-Lin law (K-L hereafter) corresponds to an 
exponential growth : 

D2 - t3 in the energy cascade, Pa)  

(2 b)  in the enstrophy cascade. 



536 A .  Babiano, C. Basdevant, P. Le Roy and R. Sadourny 

Here c is a non-dimensional constant and r* the characteristic dispersion time, 
defined by the enstrophy cascade rate or by enstrophy in local or non-local cases 
respectively. Let us recall that in the framework of the self-similarity theory, 
dynamics are said to be non-local when contributions to the evolution of a given scale 
come mainly from scales much larger than it. Conversely in local dynamics a given 
scale interacts principally with comparable scales. A good physical illustration of 
local and non-local concepts for turbulent dispersion can be found in Er-El & Peskin 
(1981). The classic results ( l a ,  b) or derived results R-0 and K-L (2a, b )  have been 
qualitatively confirmed through the experiments of Morel & LarchevGque (1974) and 
Er-El & Peskin (1981) in the atmosphere, and Price (1981) and the experiments 
summarized in Okubo (1971) and Anikiev et al. (1985) in the ocean. 

In two previous articles, Babiano, Basdevant & Sadourny (1985), Babiano et al. 
(1987), referred to hereinafter as (BBS and BBLS), we re-examined, in the particular 
context of two-dimensional incompressible turbulence, the relative and single- 
particle dispersion laws, and their links with the scale dependency of Eulerian and 
Lagrangian energy spectra. The objective of the following work is to complete the 
analyses developed in BBS concerning the relative dispersion, and to give theoretical 
formulations whose verification by direct numerical experimentation can be done in 
a relatively simple manner. We shall analyse the K-L law from the standpoint of 
Bachelor’s (1952a, b)  classical analyses. Concerning the R-0 law, we shall show that, 
in two-dimensional turbulence, the scales of the inverse cascade of energy are reached 
after dispersion times long enough to allow the use of Lin & Reid’s (1963) hypotheses 
on stationarity of the correlations of relative accelerations. This assumption is not in 
general natural to the concept of relative dispersion ; however, in the energy inertial 
range of two-dimensional turbulence, these working hypotheses appears not too 
unrealistic. 

After a quick review ($2) of the results given in BBS and BBLS, we shall show in 
$ 3 how the relative dispersion law can be formulated as a kinematic equation ; the 
classic results R-0 and K-L will then be compared to both solutions of this 
kinematic equation and results from numerical experiments. In $$4 and 5 we shall 
examine the sufficient conditions to enable R-0 and K-L to be observed. 

The Eulerian numerical simulation and the Lagrangian experiments are described 
in the Appendix. 

2. Definitions and background 
2.1. DeJinitions 

We are interested in the dispersion of particle pairs which, initially separated by a 
given distance Do = I (  Doll, are advected by stationary two-dimensional turbulence. 
For every pair of particles with Lagrangian coordinates a, and a, (Do = a,-a,) ,  the 
separation vector D a t  time t is expressed through Do and the absolute displacement 
vector A by 

D(t,Do) = D,+[A(a, , t ) -A(a, , t ) l ,  

where A is defined in terms of the Lagrangian velocity field V by 

A(u, t )  = V(a, 7 )  dr. s: (3) 
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Defining the Lagrangian relative velocity vector SV = d/dt D and the reiative 
acceleration vector Sr = d/dt SV, one can write 

Denoting by ( a ) ,  the ensemble average at time t over all particles and by (.) the 
ensemble average a t  time t over all particles pairs initially separated by a given 
distance Do, the single-particle dispersion and the relative dispersion are defined by 

A 2 @ )  = ( A @ ,  t )  * 4 4  t)),, 

D*(t,DO) = ( D ( t )  - D(t) ) .  

The absolute and relative dispersion coefficients K(t )  and Y(t,Do) are defined by 

K(t)  = '%4"t) = ( A ( &  t )  V(u, t)),, 
2 dt 

Using (8) and (3) we obtain 

( V(a, t )  * V(U, 7)),d7; 

similarly from (9) and (4) 

Y(t ,  Do) = (Do*  SV(t, D o ) )  + (SV(t, Do) * SV(7, Do))  d7. (11)  L 

l 

Hypothesis H1: If the turbulence is homogeneous the following condition is verified : 

(D,.SV(t, D o ) )  = 0. 

Assuming condition H i  and using (lo), (11) can be expanded into 

Y(t,  Do) = X(t)  - 2 ( V(U,, t )  V(u2, 7 ) )  d7. (12) 

Figure 1 (a)  shows typical behaviour of Y( t )  and 2K(t). The times TI and TE are the 
times necessary for relative dispersion (7)  to reach respectively the forcing scale D ,  
or the most energetic scale D, (see table 1 )  ; they are functions of Do. The time T, is 
defined by T, = Z-i, where Z = ;( IIcurl Vllz)>, is the enstrophy of the flow, (*), 
referring to averaging over all Eulerian position vectors x. We observe from figure 
1 (a )  that Y ( t )  and X(t) depend linearly on t for t < T,, and become practically 
constant and identical to each other for t 2 T,. The latter behaviour is consistent 
with the vanishing of the correlation term in (12) a t  large times, when the separation 
scale becomes larger than the most energetic scale. Figure l ( b )  shows the first 
correlation term in (11 ) :  (D,.SV). H l  is well verified in our numerical experiment 
R256P40 (see Appendix for details) when the statistical sampling is performed over 
1024 pairs (curve 1 ) ;  when the sampling is downgraded to 128 pairs (an estimate 
closer to practical capabilities of in situ or laboratory observations) H1 is verified 
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FIQURE 1.  (a) Behaviour of dispersion coefficients K and Y as a function of time. (b) The correlation 
term ( 0 ; S V )  ; curve 1 ,  corresponding to 1024 pairs, is indistinguishable from the time axis; curve 
2 corresponds to 128 pairs. 

t 

only in the time-mean sense (curve 2). Thus, in practical experiments, a significant 
level of noise is to be expected when verifying (12). 

Single-particle dispersion (6), (10) can be studied theoretically within the 
framework of Taylor’s and Batchelor’s analyses, based on its rigorous relation with 
the Lagrangian energy spectrum L(v ) .  This kind of approach, however, is less well 
suited to relative dispersion, because the velocity correlation in (1 1) or the cross- 
correlation in (12) are not stationary (they depend both on t and 7) and cannot be 
rigorously related, either to L ( v ) ,  or to the Eulerian energy spectrum E(k) .  Kraichnan 
(1966) and Bennett (1984) give a spectral analysis of (12) introducing the concept of 
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t* (days) Z* (km) E z TL Tz D, D E  

R256F40 553.8 636.6 113 57000 0.013 0.0042 0.0785 0.4 
R1024F40 555.05 636.6 113.5 75800 0.0125 0.0036 0.0785 0.35 
R1728F40 557.5 636.6 114.5 66500 0.0115 0.0039 0.0785 0.35 
R 1024F4 102.2 63.66 15.4 241.8 0.08 0.064 0.785 - 

TABLE 1 .  Characteristic non-dimensional parameters of the experiments 

Lagrangian modal time correlation defined in homogeneous two-dimensional 

(13) 
turbulence as 

(14) 

w, 7 )  = U(k, T ) / U ( k ,  O ) ,  

U ( k , 7 )  = ( 2 7 ~ ) - ~  exp( ik-D)  V(x+D,t)-  V(x,tlt-7)d2D,\ 

U(k, 0) = (Znk)-1E(k). I s with 

In (14), V(x, t I t - 7 )  is the velocity at  time t -7  of a particle whose position at  time 
t is x ; the bar refers to averaging with respect to x. Bennett (1984) rightly mentions 
that (14), contrary to (12), is not a strictly Lagrangian description; it does not allow 
particle pairs which were originally separated by a given Do from each other to be 
distinguished. In this case, it is simpler and more convenient to use instead of (12) 
and ( 14), the instantaneous relative dispersion coefficient 

X(9) = {( [ g D  ' Dp)J = { ( [ D  SV(D)]2)ra}t, 

where (*)p is the conditional ensemble average obtained when IlDll = 9, 
independently of Do. The instantaneous relative dispersion coefficient X(9) can be 
expressed using the second-order longitudinal structure function 8,,(9) : 

X ( 9 )  = [SII(.Q)]%7. (15) 

2.2. Instantaneous relative dispersion 
Instantaneous relative dispersion has been studied in BBS in connection with the 
Eulerian energy spectrum. The characteristic timescale is defined as 

At  small scales, the asymptotic behaviour of X and T~ is given by 

~ ( 9 )  x @w, ~ ~ ( 9 )  x 22-t for 9+0. (17) 

In a range of scales where self-similarity holds for the Eulerian energy spectrum, say 
E(k)  = k-", we have 

(18) I X ( 9 ) - 9 ,  7 X - 9  for 1 G m ,  

~ ( 9 ) - 9 w ,  T X - 9 v  for 1 < m < 3 ,  

x ( ~ ) - w ,  7 X - 2 ~ - f  for m > 3 .  

Expressions (18) are indeed consistent with the classic result (la, b)  for m = or 
m 2 3 cases (for an argument based on (12) and the self-similarity assumption, see 
Bennett 1984). However, X(9) being defined in a root-mean-square sense, (18) 
cannot be rigorously integrated in time to yield R-0 or K-L ( ( 2 a )  or ( 2 6 ) ) .  

i n  FL.M 214 
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Two important conclusions can be stated at this stage : first, the asymptotic law 
(17) established by Taylor expansion at  vanishing scales extends in fact throughout 
the enstrophy inertial range ; and secondly, all 'non-local' energy spectra give in 
practice undistinguishable instantaneous dispersion and structure functions. The 
latter assumption means that it will be extremely difficult to recover the time energy 
spectrum, or to make use of a formulation like (14), in the context of studying the 
enstrophy inertial range by laboratory or in situ experiments. 

2.3. Single-particle dispersion 
As in the instantaneous relative dispersion case, the single-particle dispersion (6) and 
diffusivity (10) can be examined in connection with the shape of the energy spectrum 
(see BBLS). For a Lagrangian energy spectrum L( v )  = V-" in a Lagrangian frequency 
domain v1 -g v - l / t  < v2 three cases will be considered: 

(19) i 
Rz(t)  - t 2 ,  K ( t )  - t for n > 1, 

A2(t)  - tn+l, K(t)  - tn for - 1  < n < 1,  

A2(t)  - const., K(t )  = 0 for n < - 1.  

Expressions (19) show that A2(t)  and K(t )  saturate for n > 1 and then no longer 
depend on the slope of the Lagrangian energy spectrum. In this case again, L(v)  is 
difficult to reconstruct and (14) difficult to use in the context of practical experiments. 

Taylor-Batchelor's asymptotic behaviour 

A' N 2Et2, K( t )  - 2Et (20) 

is more than simply the asymptotic laws for t + 0, as it remains valid in sufficiently 
general cases ( n  > 1). In (20) E is the mean Lagrangian kinetic energy, defined as 
E = +( 11 Vl12)>,. The validity of (20) is commonly accepted for t < TL, where TL is the 
Lagrangian integral timescale. Assuming that the Lagrangian correlation is Gaussian 
in shape, we noticed in BBLS that in homogeneous and isotropic two-dimensional 
turbulence, TL is given by 

(21) TL w ( 2 ~ / 3 ) k i  = 1.45 T,. 

Experimental results shown in figure 1 (a)  and later indicate that (20) remains valid 
up to t = T,. 

2.4.  The case of inhomogeneous flows 

It is customary to express the characteristic nonlinear timescale as the inverse square 
root of the enstrophy: this type of formulation has been used in (17). Strictly 
speaking however, the Taylor expansion of velocity used in the derivation of (17) 
yields a first-order estimate of the longitudinal structure function which involves the 
velocity gradient rather than vorticity. The corresponding expression for X(9) is 

~ ( 9 )  w + [ + ( ( ( V V ' ( I ~ ) , ] ~ ~  for 9-0. 

The squared norm of the velocity gradient is generally expressed as 

IIVV(I2 = g ( d + S ; + s ; ) ,  

where w refers to vorticity and s,, s2 to deformations: 

= a,v-a,u, 8, = a z u - a Y v ,  sz = aZv+auu .  
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The ( *), average acting over the whole flow domain, (17) follows from the equalities 

(IlVVl12>, = (w' ) ,  = ( s : ! + s L  

which hold for adequate boundary conditions such as periodicity or vanishing 
velocity. 

In experimental practice, we may have to consider cases where the set of particles 
does not sample the whole flow domain, but is restricted to a sub-domain 0. If, in 
addition, the flow is inhomogeneous, then (17) and 21) are no longer valid: 2 must 
be replaced by the squared norm of the velocity gradient over 0. 

3. Relative dispersion 
3.1. Theory : a diferential equation to govern relative dispersion 

In this section we shall give a mathematical description of relative dispersion 
following that already explored in Lin (1960), Lin & Reid (1963) and Babiano & Le 
Roy (1987). From (4), we get (for simplicity we shall omit reference to the 
dependency on Do in all the following expressions) 

s, 

I: 

d 
dt 

t-(1D-Do112 = 216V(t) 8V(7)d7. which yields 

On the other hand, an integration by parts yields the identity 

LaV(7)dr = t&V(t)- 7W(7)d7; 

hence (22) can be rewritten 

Relation (24) is a differential equation which governs the time evolution of the 
separation D of a particle pair. Averaging (24) over a set of particle pairs initially 
separated by a given distance Do and integrating in time yields 

with 
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Within the limits of hypothesis H1, (25) yields 
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D2(t, Do) = Di+ t 

Equations (25) and (28) have been obtained from strictly kinematic arguments; (25) 
is rigorous. In both cases the dynamics of the flow acts through the terms (l18V112) 
and G. Equation (25) is a generalization of Lin & Reid’s (1963) formulation, and 
complements ( l l ) ,  over which i t  has a few advantages: first, (25) and its H l -  
equivalent (28) clearly separate the respective contributions of velocity and 
acceleration ; secondly, it  lends itself more easily tharP (1 1) or (12) to developments 
without reference to self-similarity hypotheses. 

3.2. Asymptotic behaviour of relative dispersion 
At large times, the velocities of the two particles in a pair become decorrelated, so 
that 

Further, if we assume that the integral of the time correlation of the relative 
velocities involved in the relation (1  1) converges, then 

(l18V/12) - 4 3  when t - tco .  (29) 

D 2 - t  when t - t co ,  (30) 

which, together with (as), yields 

G - 4 E  when t - t co .  (31) 

At small times, ifD, is a small scale in the enstrophy range, (l18V[12) is a function 
of the enstrophy 2, as shown in BBS: 

( l\8V/12) - 2S(D,) - 20; when t + O ,  (32) 

where X ( 9 )  = $( I18V(D)l12)g, is the Eulerian second-order structure function. The 
only thing we know a priori about G is its asymptotic behaviour for t + O :  

G - a(I18&112)t2 when t+O. (33) 

D2(t,  Do) = Di + 25(D0) t2 when t - t  0. (34) 

Then the asymptotic behaviour of (28) for small times is 

Relation (34) is well known (see Hinze L975 and Kraichnan 1966). According to 
(32) we obtain the two-dimensional variant of (34) : 

D2(t,Do) = Di(1+Zt2) when t+O. (35) 

As we have demonstrated in $2.3 that (20) is valid in a much larger interval than the 
vicinity of t+O, we shall now show that the asymptotic law (35) can be extended to 
a similar frequency range. From (12) and definition (3), 

(36) Y(t,  Do) = 2K(t) - 2 0 ,  

0 = ( V(U,, t )  * V(U,, 7)) d7 = ( V(U,, t )  - A(u,, t ) ) .  i: with 

Using the Cauchy-Schwarz inequality 

101 6 [(I1 ~(~~~)1l2),lf~[(Il~(~~t)ll2),1f. 



Relative dispersion in two-dimensional turbulence 543 

* q =  3.1 
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FIGURE 2. (a) Mean-squared relative velocity ( IISVIIz) and ( b )  G ,  as a function of time for 
various q = D,/D,. 

t 

The first tery in the product refers to a mean Lagrangian energy and is therefore 

101 < 2Et for n > 1 equal to (2E)a; from (20) 

which, combined with (20) and (36), yields 

0 < Y(t ,Do)  < 8Et for n > 1, 
or, after integrating in time, 

0 < P ( t ,  Do) < Di + 8Et2, 

a weaker form of (35) extending to a frequency range where the Lagrangian energy 
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F 

10-3 lo-* lo-' 

FIGURE 3. Time evolution of P(t )  for various q = Do/D,. Times T, and T, (a function of Do) are 
indicated. 

t 

spectrum is observed to be of the form v-" with n > 1, independently of the Eulerian 
spectral energy distribution. The experimental results presented in figure 1 (a) and 
hereafter show that this time interval is perhaps better defined as 0 < t < T,. 

I 3.3. Numerical experiments 
All the experimental results presented here come from the numerical simulations 
described in the Appendix, done with higher resolution than those of Babiano & Le 
Roy (1987); some of the conclusions of the former have to be slightly modified. 

In  figure 2 (experiments R256F40 and R1728F40) we plot for various values of the 
ratio q = Do/DI the two terms ( IJSVIJ2) and G which contain the dynamics of the 
flow in equation (28) (the values of times TI and TE for these experiments can be 
estimated from figure 4a). The asymptotic behaviour (29) and (32) of <llSVl12} is well 
recovered: the curves start from levels which are an increasing function of q. They 
reach their common asymptotic level 4E after a growth phase whose slope varies 
between to to tb ( b  > 1). The asymptotic behaviour (31) and (33) of G is also 
experimentally well recovered. For t 2 TE, the stationary stage G = 4 3  has been 
reached. 

Figure 3 (experiments R256F40 and R1728F40) shows the time evolution of the 
integrand F(t )  of (28)  for various values of Do. The curves clearly illustrate the fact 
that solution (28) is sensitive to Do for dispersion times t < TE (see Davis 1983) and 
that the asymptotic behaviour (35) is valid up to t x T,. From the physical 
standpoint, it is likely that F(t )  remains positive a t  all times for all values of Do. 
Then, as Do-+O, F(t ,D,)  must reach an asymptotic limit F(t )  which increases from 
zero to a maximum value in the vicinity o f t  = TE, then decreases back to zero, with 
(29) and (31). This asymptotic limit for F is reached, in our experiments, for q = 0.05. 
It should be noticed that in this case behaviour (35) is valid up to t x TI. 

Figures 4(a) (experiments R256F40, R1024F40 and R1728F40) and 4 ( b )  
(experiment R1024F4) show the time evolution of D2 plotted using a log-log scale. 
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10-1 

1 0 - 4  

1 0 - 3  10-2 10-1 

FIGURE 4. Relative dispersion as a function of time for various q = D,/D,;  (a) experiments 
R256F40, R102F40 and R1728F40 (0.05 6 q 6 3.1); (b) experiment R1024F4 (q = 0.008). Scales D, 
and D,  are indicated. 

From the theory, we would expect a succession of four different types of behaviour : 
first, phase (35), followed by exponential growth K-L ( 2 b )  in the enstrophy inertial 
range, then a t3 law R-0 ( 2 a )  in the energy inertial range, and finally an asymptotic 
linear growth (30). But in fact we should remember that R-0 and K-L are 
asymptotic laws which begin to be valid only when the observed separation scale is 
large enough compared to the separation scale Do at  which the particle pairs have 
been released. In all our simulations, the initial behaviour (35) is well verified. Among 
all experiments displayed in figures 4(a)  and 4 ( b ) ,  only the one in figure 4 ( b )  shows 
a clear saturation of the dispersion law in the enstrophy inertial range (D < D I ) .  It 
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thus seems that the asymptotic law requires a value D/Do of the order of 30 to 
become established. We note however that the saturation law of D2(t) in figure 4(b) 
is a power law close to t 5 ,  in contradiction to the predicted exponential of K-L. In 
the energy inertial range, the asymptotic t3 prediction of R-0 appears well verified 
for small enough values of the ratio q = Do/D,  (figure 4a) .  When the initial 
separation Do is not small, the growth of D2 can be significantly slower than the t3 
law. This is consistent with the results described in Anikiev et al. (1985) and Okubo 
(1971) where D2 - ta with 2 < a < 3 was found for ratios q larger than 0.1. Note also 
that Kowalsky & Peskin (1981) have displayed numerical results similar to ours with 
q close to 0.3, in the framework of non-statistically stationary decaying turbulence. 
Lastly, the behaviour at long times displayed by our experiments (figure 4a) sustains 
the prediction of linear growth (30), reached for scales significantly larger than D,, 
the most energetic scale. 

To summarize, all theoretical predictions except the exponential law K-L have 
been sustained by our numerical experiments on the growth of relative dispersion. 
However, in the two inertial ranges, asymptotic laws can be reached only when the 
initial separation is small : the fact that we need a ratio D/Do roughly of the order of 
30 to observe asymptotic laws there may be important when interpreting in sit% 
measurements. In  the following sections, we shall return to a more thorough 
discussion of R-0 and K-L laws in order to investigate their limit of validity. 

4. The ' t 3  law' 
4.1. The stationarity hypothesis 

In a simplified approach to relations (26) and (27), we may assume, in addition to H 1 ,  
the following hypotheses (Lin & Reid 1963): 

Hypothesis H2: ( & K - & V ( t ) )  = 0, 

Hypothesis H3: (W(t ) .W(-7) )  = R ( a ) ,  a = t--7.  

With H 2 ,  the analysis of the primitive relations (26) and (27) is displaced to times for 
which the pairs of particles no longer retain the memory of their origin; it 
corresponds approximately to assuming t > TL. H3 supposes that the correlations of 
relative accelerations are statistically stationary, i.e. are functions only of u = t--7. 
Note that hypothesis H3 was proposed by Lin & Reid for three-dimensional 
turbulence ; in this case H3 is crude and inefficient in the energy range because for 
dispersion times long compared to TL there is a high probability that scales larger 
than the energy inertial range have been attained. However, in two-dimensional 
turbulence H 3  may be useful as scales in the inverse energy cascade (D > D I )  are 
attained only for dispersion times large compared with TL. Assuming H1-H3, 
relations ( 118 VIJ ') and G simplify to : 

where l o ( t )  = R ( a )  du, I , ( t )  = aR(u) da, 13(t) = 
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and [ * I H  refers to Hl-H3 hypotheses. Using (37) and (38), we get from (28) 

D2(t )  = D~+{<llsv,112)+[G(t)IH}t2. (39) 

The interest of relation (39) is that it reformulates the exact dispersion problem (25) 
under the restrictive hypotheses H2 and H3 of Lin & Reid (1963) yielding the 
classical Richardson law R-0. Equations (39) and (28) are identical a t  small times 
(see (34)). This would seem to be a paradox, because a t  small times we expect the 
dispersion process to be non-stationary ; however, the non-stationary terms omitted 
in (39) are then negligible. Following Lin & Reid, we may allow I, to converge for 
large time: I,(t) - const for t ,  < t < TE. It follows that 

Then (37)-(39) yield the following behaviour : 

[(IlsV(t)112)]H - t, [G(t)IH - t, D2(t)  - t3 when t > t,. (41) 

The assumption that I, converges a t  some characteristic timescale t ,  is reasonable if 
the Lagrangian time correlation of relative acceleration is indeed stationary ; in that 
case the behaviour (41) would be only valid within the time span t, < t < TE, being 
replaced afterwards by the real asymptotics behaviour (29)-(31). 

The experimental verification of H3 and (40) is conceivable only in the framework 
of numerical experiments. In all other cases the validity of H3 may only be tested 
a posteriori by checking whether (41) holds. Using (37)-(39) we get from (24) the 
following equation : 

(42) 
d 
dt --02 = ~ ~ I l ~ v , l l ” + + I l ~ ~ ~ ~ ~ I I ” l ~ .  

Equation (42) has been derived under hypotheses H2 and H3 ; it may be used then 
to verify the validity of these hypotheses. In  that respect it has the advantage over 
relations (37)-(39) that all its terms are accessible to measurements. If we define the 
ratio 

we already know that @ is a decreasing function oft ,  vanishing for t > TE as dD2/dt 
becomes constant. The domain of validity of H2 and H3 will be determined by the 
region in which dD2/dt and its approximation (42) have the same growth law, i.e. @(t) 
exhibits a plateau. 

4.2. Numerical experiments 
Direct testing of the validity of (42) can be performed on the basis of the numerical 
experiments R1728F40. We plot in figure 5 ( a )  the numerical values of both dD2/dt 
(curve 1) and its approximation (40) (curve 2). This is in fact equivalent to making 
a comparison between (42) and (24), as we have seen above that (24) is accurately 
verified in our numerical experiments (see Babiano & Le Roy 1987). The wrong 
estimation of dispersion by (42) as soon as t gets larger than TL is conspicuous : there 
are apparently no intermediate times a t  which (42) would be valid. For example, for 
t > 0.04, i.e. in the time range where D2(t) reaches the t3 regime seen in figure 4(a), 
the right-hand side (curve 2) and the left-hand side (curve 1 )  of (42) continue to 
diverge steadily from each other. This does not imply that H3 is invalid at that time. 
Indeed, the contribution of non-stationary terms is cumulative. Figure 5 (b )  shows 
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FIGURE 5. (a)  Numerical values of both dD2/dt (curve 1 )  and its approximation (42) (curve 2) 
(experiment R1728F40) ; and ( b )  the DID, evolution of rP (experiments R256F40, q = 0.3; 
R1024F40, q = 0.08; and R1728F40, q = 0.05). 

evolution of the ratio @ with D/DI  in the R256F40 (q  = 0.3), R1024F40 (q = 0.08) 
and R1728F40 (q = 0.05) experiments. For q = 0.3 (no t3 regimes, see figure 4a),  @ 
is decreasing over all the D/DI  range. For q = 0.08 and q = 0.05, @ exhibits a plateau 
in the inverse energy cascade, where t3 regimes have been observed (see figure 4a). 
These results show that there is a strong correlation between the t3 growth and the 
pseudo-stationary regime within the inverse energy inertial range. 
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5. The ‘exponential law’ 
5.1. Characteristic time from relative dispersion 

By analogy with definition (16) for 7 x ( 9 ) ,  we shall define the characteristic time of 
relative dispersion by 

(43) 
D“t, DO) 
Y(t ,D, )  ’ 

7y(t,DO) = 

where Y(t ,Do) is defined by (9 ) .  Within the limits of hypothesis H 1  and relation (28) ,  
(43) can be rewritten 

Di + t F(7,  Do) d7 
7y(t,DO) = 2 s: (44) 

Integrating (43) in time we get 

D2(t ,Do)  =Diexp 2 7G1d7 . [ s :  1 (45) 

From (45) it  is clear that the K-L law corresponds to the special case where the 
characteristic time 7 y  may be considered as locally constant. The time evolution of 
7y is known from the relative dispersion asymptotic behaviour given in $$3.2,3.3 : a t  
small times, 7 y  decreases from infinity, then it grows linearly with time for t > TE. 
This behaviour has been qualitatively analysed by Batchelor (1952b) and Monin & 
Yaglom (1975). Between these two asymptotic types of behaviour, 7y passes through 
a minimum value corresponding to maximum efficiency of turbulent dispersion, 
reached when the angle between D and 6V is minimum in the mean (see definition 

Experimental results presented in figures 1 and 3 prove that the domain of validity 
of the asymptotic law (35) ,  examined in 53.3, extends to times of order of T,. 
According to (35) we may rewrite the limited expansion of 7y.  We get for t < T,: 

( 9 ) ) .  

D2( t ,Do)  = D;+2S(D0) t2+o( t4) ,  (46) 
where there is no t3 term because its coefficient is proportional to [dldt ( IlSVll’)],-, 
which vanishes as shown by the experimental results displayed in figure 2. From (46) 
one gets 

where a = Y”’(O,D,). From (43) ,  (46) and (47) we can derive the time dependency of 

Y( t ,Do)  = 2S(DO)t+at3+o(t4) ,  (47) 

7 y  for t < T,: 

with 

 DO) + p2t2 + 0( t3)  

2t 
r y  = > 

The structural time 7s is an Eulerian characteristic. From BBS we know that in 
an enstrophy cascade range (m 2 3), 7s is constant and proportional to the inverse 
of the square root of enstrophy, so 

7s(D0) x 1/2Z-: = 4 2  T, for Do < kyl. (49) 

According to (48) and (49) we see that T~ reaches a minimum value T~~~~ = 
when t = tmin = 1/2P1T,. Assuming (17) :  
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FIQURE 6. Characteristic time 7y  as a function of D for various q = D,/D,  (experiments R256F40 
and R1728F40) ; the dotted curve a corresponds to the function 1/27,(@, which is equal to 7x(D)  
in the enstrophy cascade range (D < D,). Scales D, and D,  are indicated. 

with p = d2 when a = 0. We observe that T~ is comparable with 
x(9 = D ) )  only close to its minimum value (50). 

(i.e. Y(D) = 

Going further in the Taylor expansion of ( T ~ ) - ~  in the vicinity of tmin: 

TG1( t ,DO)  = 7-l Ymi, +B(t-tmin)2(TG')bt,,, + ~ ( t - t m i n ) ~ .  (51) 

Assuming (48), we may evaluate the second derivative a t  ( T ~ ) - ~  when t = tmin: 

( -1 7Y f t  
= -~ d2  q 3 .  

8 

(53) 
2 4 2  which yields lt-tminl 6 - @ Tz- 

From this relation we may conclude that the exponential law K-L may be valid 
in the vicinity of tmin only for a duration of the order of T,. 

5.2. Experimental results 
Several characteristic times according to D = (D2(t))' are displayed in figure 6 :  the 
experimental 7y defined by (43) and 1 /2Ts  (curve a), which is equal to 7x in the 
enstrophy cascade range (D < D,) ( q  = 0.05 (R1728F40) and 0.3 < q < 3.1 
(R256F40)). The experimental T~ decreases from infinity to a minimum value. When 
Do is in the enstrophy range this minimum value is in excellent agreement with the 
theoretical result (49), (50) with a = 0. When Do is in the reverse energy cascade 
range experimental results show that a cannot be neglected ; because experimental 
minimum values of 7y are larger than theoretical values obtained with a = 0 we 
conclude that, in our experiment, a is negative. After having reached its minimum, 
ry departs rather quickly from T ~ ,  which means that the regime of exponential 
increase of D2 is just a brief transient behaviour in the vicinity of TY,,,. When the 
initial separation scale lies at the bottom of the enstrophy inertial range (for 
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example, q = 0.05), the transient exponential behaviour ceases long before D, is 
reached. I n  fact, we verify in all our experiments that it holds only in the close 
vicinity of t = T,; for q = 0.05, the observed duration of the exponential regime is 
0.01, to  be compared with a theoretical estimate of 0.0074, obtained from (53). The 
exponential regime is thus not an asymptotic law valid for t 9 T,, as assumed in 
Bennett (1984). 

6. Conclusion 
In  this work we have examined, both numerically and theoretically, the statistical 

laws governing relative dispersion of particle pairs advected in a two-dimensional 
turbulent, incompressible, homogeneous and stationary velocity field. We obtained 
a rigorous differential equation governing relative dispersion. This differential 
equation, being based on simple kinematic relations between relative position, 
relative velocity and relative acceleration of particle pairs, is valid for both two- and 
three-dimensional dynamics. Concentrating on the incompressible two-dimensional 
case we focused our analysis on the classical Kraichnan-Lin and Richardson- 
Obukhov laws. 

We found that, in dimension two, if the initial separation scale is small enough, 
dispersion has reached a quasi-stationary regime when it enters the scales of the 
energy inertial range : the t3 law is then experimentally well verified and remains so 
up to the most energetic scales. We show that large-scale dispersion strongly depends 
on the initial separation Do of particles pairs. More precisely, in the time range when 
dispersion reaches the scales located between the forcing scale D, and the most 
energetic scales, the time evolution of D2 is close to t3 only if the ratio q = D,/D, is 
small enough. This behaviour was predicted long ago from self-similarity arguments. 
What is new in two-dimensional dynamics is that, for small enough Do, the inverse 
energy inertial range is reached only after a long dispersion time, and then the 
contribution of non-stationary terms in the exact dispersion equation may have 
saturated. I n  that case the working assumption of stationarity and all its 
consequences may lead to analytical quantitative results valid for the inverse energy 
cascade of two-dimensional turbulence and comparable the Richardson-Obukhov 
law. 

The Kraichnan-Lin law, on the other hand, is an approximation valid only near 
a characteristic configuration, already mentioned in Batchelor (1952b), where T~ is 
minimal. The minimum of 7 y  corresponds to the scale a t  which the turbulent 
diffusivity is most efficient, which itself depends on the initial separation scale; it is 
attained a t  a time of the order of T,. It is only because of the existence of this 
minimum, and in the vicinity of it, that D2 obeys the exponential law : this behaviour 
occurs either in the energy inertial range, or in the enstrophy inertial range, 
depending on the initial separation scale. When it occurs in the enstrophy inertial 
range, it does not extend throughout to the injection scale; also in that case, we get 
'ymin = 22-i. The latter result, well verified in our experiments, allows an estimation 
of the enstrophy of the flow from dispersion measurements. 

The numerical computations were performed under contract number 14004 of the 
Centre de Calcul Vectoriel pour la Recherche. The authors are grateful for 
constructive criticism by two referees, which led to improvement of the paper. 
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FIQURE 7 (u, b ) .  For caption see facing page. 

Appendix. The Eulerian numerical model and the Lagrangian experiments 

and BBLS. The quasi-geostrophic barotropic vorticity equation 
In this work we use the Eulerian numerical simulation previously described in BBS 

aw 
-+ J(@> 0 )  = g ( w )  +fb) at 

is integrated on a doubly periodic square domain of side L ,  using a pseudo-spectral 
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FIGURE 7. Eulerian energy spectrum. Arrows indicate the injection wavenumber k, = n/DI and the 
most energetic wavenumber k, = x/D,;  the resolutions used are: (a) 25Ba, ( b )  1024', (c) 1728', (d )  
10242 for the F4 experiment (see Appendix); (log-log scale). 

approximation (Basdevant et al. 1981) on 256', 1024' and 17282 grids. Here $ refers 
to the stream function, w to vorticity; f ( w )  and g ( w )  respectively to the forcing and 
dissipation terms and J the horizontal Jacobian. High resolutions, 10242 and 1728', 
were required to study relative dispersion D'(t) in the case of very small initial 
separation Do. Except for the 1728' resolution, dissipation is defined as 

g(w)  = J[$, WE AI4J($, w)l + t ~ ' ~ i ' $ ,  
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FIQIJRE 8. Energy fluxes; the resolutions used are (a) 2562, ( b )  10242; (log-log scale). 

where 8 and t, are characteristic times, I ,  the cutoff scale and 1, the largest scales. 
Dissipation thus involves a parameterization of subgrid scale called the ‘ anticipated 
potential vorticity method ’ (APVM) (Sadourny & Basdevant 1985), designed to 
dissipate only enstrophy near the cutoff scale, and a linear ‘friction’ to dissipate 
energy a t  larger scales. In  experiments hereafter denoted F40, the forcing is defined 
by keeping the amplitude of the zonal mode k, = (0,40) constant in time. In this way, 
even in the case of the 256* moderate resolution, we obtain a correct simulation of 
both the reverse energy and the direct enstrophy cascades because of the combined 
use of a large k, and the APVM. This is illustrated by the Eulerian energy spectrum 
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FIGURE 9. Enstrophy fluxes; the resolutions used are (a) 256', (6) 10242; (log-log scale). 

(figures 7 a and 7 6 )  which behaves as E( k) - k-" on both sides of the injection wave- 
number k,, with an inertial enstrophy domain for k > k, (m 2 3) and a reverse energy 
cascade for k < k, (m x 5); this is also well illustrated by the constancy of energy 
(figures 8a and 8 6 )  and enstrophy (figures 9a and 9 b )  fluxes. 

In the case with a resolution of 17282, we use the dissipation 

g ( 0 )  = - t i1( - l , l A ) s ~  + td1Zd2$ 

described in BBLS, where t ,  is another characteristic time. The iterated Laplacian 
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(Basdevant et al. 1983) used here to dissipate essentially enstrophy near the cutoff 
scale is not as efficient as the APVM described above in simulating the dynamics of 
the very small scales ; but the APVM would have required too much memory. 

These F40 experiments with various resolutions (R256F40, R1024F40 and 
R1728F40) can be compared easily to  one another because all are scaled with the 
same forcing scale ; the results of the three different resolutions used are displayed 
together on figure 4(a) (0.05 < q < 3.1). In  one further F4 experiment (R1024F4) the 
forcing is applied on a smaller zonal mode k, = (0,4) with a 1024* grid. With this 
choice we obtain a very wide enstrophy inertial range (see figure 7 d ) ,  which allows 
us to perform relative dispersion experiments with very small values of the ratio 
q ( q  = 0.008). 

The Lagrangian motion is obtained by integrating the transport equation 

- = V ( X , t )  
d X  
dt 

using a Runge-Kutta second-order scheme (RK2) : 

X, = X(t )+At  V ( X , t ) ,  

X(t+At)  = X( t )+ tA t [V(X , t )+  V(X, , t ) ] ,  

where At is the time step of the Eulerian model. V(X,  t )  and V(X,,  t )  are evaluated by 
linear interpolation within a mesh. The truncation error was investigated in great 
detail in BBLS in the case of an Euler advection scheme. Here the RK2 scheme used 
is more precise. The two schemes are compared: the quantity displayed is the 
squared displacement A2(t) of one particle advected around a strong vortex in a 
frozen field (i.e. an Eulerian field which does not change in time). In  the Euler case, 
A2( t )  never comes back to zero and increases in mean: this indicates that the 
trajectory is not circular but spiral. In  the RK2 case the displacement vector 
regularly comes back to zero. The individual particle has turned around the vortex 
more than ten times on exactly the same trajectory as expected in a frozen field. This 
clearly indicates that with the RK2 scheme the numerical diffusion, which in BBLS 
was essentially noticed in the vicinity of the vortices, has become quite negligible. A 
more accurate time scheme (RK4) together with a spline interpolation, ensuring the 
continuity of the Lagrangian acceleration field, did not modify significantly the 
statistical results of the present work (N. Zouari, private communication). 

At stationary regime conditions (Z ( t )  x const. and E(t )  x const.), a set of 1024 
pairs of particles for experiments R256F40 (4096 pairs for experiments R1024F40, 
R1024F4 and R1728F40) all with the same separation (Do = iAx, where Ax is the grid 
interval and i = 1,2,3,5,10) are released all over the entire domain and statistics 
leading to evaluation of mean relative dispersion are constructed for several values 
q = Do/D, = iAx/D,. Characteristic non-dimensional parameters of our experiments 
are displayed in table 1.  The scale factors I* and t* used to non-dimensionalize the 
equations were obtained by prescribing the forcing scale d ,  ( d ,  = 50 km) and the 
mean energy e (e  = 8 em2 sW2 for F4 and e = 200 em2 s - ~  for F40). Times and T', 
as a function of q, can be estimated easily from figures 4(a) and 4(b). 
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